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A systematic description of an open-shell CEPA-PNO (coupled electron pair 
approximation using pair natural orbitals) program based on spin-adapted 
PNO-configurations is given which is used for the calculation of correlation 
energies of open-shell molecular ground and excited states. This program is 
an extension of our previous closed-shell CEPA-PNO program and is desig- 
ned to treat doublet, triplet and open-shell singlet states. Its characteristic 
features are: Inclusion of all singly and doubly substituted configurations 
belonging to the interacting space; direct determination of pair natural 
orbitals; matrix element generator for automatic construction of matrix 
elements for prototype configurations; CEPA estimate of the contributions 
of unlinked clusters of singles and doubles. Applications of the program to 
small molecules will appear in further papers of this series. 
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1. Introduction 

Despite of the very rapid recent progress in conventional and particularly in 
direct CI methods-for a rather detailed, but not completely up-to-date compila- 
tion the reader is referred to [1J-the "coupled electron pair approximation" 
(CEPA) is one of the most efficient and powerful numerical schemes to calculate 
atomic and molecular correlation energies [2-8]. This is true in particular if 
CEPA is combined with the use of "pair natural orbitals" (PNOs) or with a 
"self consistent electron pairs" (SCEP) treatment [9-11]. 
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Historically, the first CEPA-paper  is Meyer's famous paper on the ionization 
energies of H 2 0  [2], followed by the calculations on methane [3] and O H  [4] 
by the same author. In Kutzelnigg's group the use of PNOs for the calculation 
of molecular correlation energies at different levels of sophistication started even 
earlier [5-7]; a detailed description of the closed-shell CEPA-PNO program [8] 
was published in 1975 followed by a series of applications. An extension of the 
CEPA method containing a more accurate treatment of the electron pairs and 
certain computational advantages was proposed by Meyer and Dykstra and 
has been termed as SCEP treatment [9-11]. The interrelations between the 
CEPA-model ,  conventional and direct CI schemes, the SCEP method 
and the many-body perturbation theory (MBPT) have been discussed by Ahlrichs 
[12, 13]. 

It seems to be justified to state that all these methods have been deve- 
loped to a status in which they give more or less identical results; an obser- 
vation that is also proved by numerical calculations, at least for closed-shell 
states. 

In all these methods the treatment of open-shell states is much more complicated 
than for closed-shell states since the number and complexity of the configurations 
that have to be included increases rapidly with the number of unpaired electrons 
and the number of necessary configurations in the reference space. Therefore,  
most of the above mentioned methods are much less far developed for open-shell 
states. 

This paper is the first one of a series of papers containing the results of CEPA- 
PNO calculations on open-shell molecules in ground or excited states. It contains 
a systematic description of our program which has to be looked at as an extension 
of our closed-shell CEPA-PNO program [8] as well as of our open-shell IEPA-  
PNO (independent electron pair approximation) program [7]. The discussion is 
mainly concerned with doublet, triplet and open-shell singlet states. But the 
characteristic features of our program (selection of configurations, determination 
of PNOs, matrix element generator) are designed to enable a straightforward 
extension to states which can only be described with a reference space containing 
more than one configuration (MC-SCF reference). 

Meyer  and his coworkers have applied very successfully their CEPA program 
for quite some time to open-shell molecules as well as to closed-shell ones 
([2, 3, 4] and numerous calculations as quoted in [14]). Many of the ideas and 
details described in this paper are already explicitly or implicitly incorporated 
in Meyer 's  C1~PA program or transferred from our closed-shell CEPA program 
[8]. Nevertheless, an explicit documentation of our scheme seems to be appropri- 
ate since it is more general than Meyer 's  (e.g. the open-shell singlet state is 
included), it can be generalized in a straightforward way to certain classes of 
multi-reference wavefunctions, and since a systematic description of many details 
(e.g. inclusion of singles, t reatment of semiinternal doubles) has never been 
published. 
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2. Reference Wavefunction 

Let ~bo be the reference wavefunction of the state �9 under consideration, i.e. d~o 
is a linear combination of those configurations which are dominant in the CI 
expansion of xl*. (It is convenient to suppose that the orbitals occupied in qbo and 
the expansion coefficients are optimized). In the simplest cases Do can be: 

(A) one closed-shell RHF determinant 

qbo = Ir " �9 " r (1) 

(B) one open-shell RHF determinant, all singly occupied orbitals with parallel 
spins 

(~)0~---}~1~1" " " @n~On~n+l" "" @n+pl; ( 2 )  

(C) a two-determinantal wavefunction for open-shell singlets (or triplets with 
Ms = 0) with two singly occupied orbitals 

1 
r ~_ ~ { k 0 1 ~ l  . . . qOnO~n@n+l~n+21 z~: kOl~l"" qOn~n~n+lq~,+21} (3a, b) 

(upper sign for singlet, lower for triplet); 

(D) a linear combination of a few closed-shell RHF determinants differing by 
double substitutions, e.g. 

Do --- C1]q~1~1 �9 " " ~n-l~n-l~On~n { "+- C 2 [ ~ 1 ~ 1  �9 �9 �9 ~n--l(~n--l(.Pn+l~n+ll. ( 4 )  

High symmetry, avoided crossings, dissociation of multiple bonds etc. can make 
more complicated reference wavefunctions necessary where the coefficients are 
given either by symmetry (as in (3)) or by energy minimization (as in (4)) by 
means of a MC-SCF procedure. 

If we restrict our treatment to the cases (1)-(3) we will call the orbitals occupied 
in qb0 "internal orbitals" (denoted by the letters/ ,  J, K)  and distinguish between 
"doubly occupied" orbitals (denoted by R, S, T) and "singly occupied" orbitals 
(U, V, W). The remaining orbitals unoccupied in qbo and orthogonal to the 
internal orbitals, are called "external" orbitals (A, B, C). If D0 consists of more 
than one configuration, the terms "singly occupied" and "unoccupied" generally 
loose their meaning. A distinction between "inactive", "active" and "external" 
orbitals [16] seems to be more appropriate. 

In some cases it is possible to start from a set of orbitals diagonalizing one single 
Fock-operator (i.e. from canonical HF orbitals) 

(I/F/J) = e,a• (5) 

For the closed-shell case (1) F is the conventional Fock-operator 

F = h +Y~ (2JR -Kn). (6) 
R 
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For the open-shell cases (2) and (3) F has a more complicated form; our RHF 
calculations are done with an operator as given by McWeeny [17] for the 
high-multiplicity case (2), and as proposed by us previously for the open-shell 
singlet [18]. 

In order to save computer time by making use of symmetry properties of localized 
equivalent orbitals we frequently transform within the sets of doubly occupied, 
singly occupied and external orbitals - the use of PNOs in any case amounts to 
a transformation in the subspace of the external orbitals. Then (5) is no longer 
valid in general. But as long as we start from a RHF reference wavefunction 
(cases (1)-(3)) Brillouin's theorem says that off-diagonal Fock operator matrix 
elements connecting different one-particle subspaces vanish 

= 0 if I and J belong to different subspaces 
(IIF[J) #0 else. (7) 

We have to comment briefly on open-shell singlet states (3a) where ~,+1 and 
~on+2 have the same spatial symmetry and do interact with the closed-shell 

2 2 configurations q~,+~ and ~on+ 2 [19]. If we discard the underlying doubly occupied 
orbitals for a moment and abbreviate the two singly occupied orbitals by ~pl and 
q~2 the CI matrix for a 3 • 3 CI [36] among the above three configurations reads 

( ~  E(u, 2) ,/2(llh+Jd2) (12121) 1 
42(11h + J~i2) E(lq01q02) ",/2(llh + Jal2) } (8) 

(12121) ,/2(11h +Jzl2) E(~o~) ] 
if we maintain the orthogonality of the orbitals q~ and q~2. There are two 
procedures to determine the orbitals r and r 

(a) Energy minimum of E(Xq~lq~2) with respect to a rotation between r and r 
This leads to the well-known condition [20] 

(11112) = (22121). (9) 

Hence all off-diagonal matrix elements connecting lq~1~p2 with q~ and q~2 z are 
identical and non-zero. E(1~o1~2) is not an upper bound to the true energy of 
the second singlet state; a CI between q~ and ~olq~2 is necessary and may push 
the energy of the second singlet state upwards. 

(b) Brillouin,condition for the rotation between ~ol and ~o2: 

(IIF[2) = (llh +./'112) = 0. (10) 

2 H 1  2 H 1  Then the off-diagonal matrix element (q~ll I q~P2) vanishes, but (q~21 I q~o2) 
not. Hence this choice of the orbitals is equivalent to a CI between q~ and a~olq~2 
and yields an upper bound to the energy of the second singlet state, provided 
one knows in advance whether q~ or ~0~ corresponds to the singlet ground state. 

Since the condition (10) is most easily implemented in our RHF program for 
open-shell singlets we generally use the second possibility. But it has to be 
emphasized that in both schemes single substitutions contribute to the total 
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energy in second order perturbation theory. The inclusion of singles in the CI 
treatment is therefore compulsory and will render the final CI energy independent 
of the choice of orbitals r ~2. 

3. Selection of Configurations 

In order to account for the most important part of electron correlation we include 
explicitly all those configurations interacting directly with the reference 
wavefunction qbo (interacting space [21-23]). These are all singly and doubly 
substituted configurations which have a non-vanishing matrix element with qbo. 
Higher substitutions and non-interacting doubles are neglected in the first step. 
Unlinked clusters of interacting doubles - necessary to obtain the correct depen- 
dence on the number of particles [3, 24-26] are taken care of in the final step 
by a CEPA-type estimate of their energy contributions. 

The construction of spin-adapted configuration state function (CSFs) spanning 
the interacting space follows closely the lines given by McLean and Liu [21]: 

(a) Set up all primitive determinants for an excitation I + A  or IJ  + A B  etc. 
which belong to the same Ms value as dPo and differ by the spin orientations of 
the singly occupied orbitals. 

(b) Discard all linear combinations belonging to an S value different from that 
of qbo and those that do not interact with qb0. The latter can be obtained by the 
procedure of McLean and Liu [21]. In most cases an inspection of the matrix 
elements suffices. 

(c) Generally, there is more than one interacting CSF. Then, we choose them 
in a way as to make the matrix elements as simple as possible and to allow for 
a physical interpretation of the CSFs. 

A compilation of the interacting singles and doubles is given in Tables 1-3, this 
list is complete for the reference wavefunctions (1) to (3). The classification of 
the prototype configurations is based on the following specifications: 

(1) Type of the orbital or orbitals to be substituted. The letters D for doubly 
occupied and $ for singly (or partly) occupied orbitals are used. 

(2) Type of the orbital or orbitals into which the excitation occurs. Following 
Silverstone and Sinano~lu [27] we distinguish between external, semiinternal, 
and internal double substitutions (corresponding to the classes {0, 2}, {1, 1}, {2, 0} 
as used by McLean and Liu [21]). 

(3) Order of excitation and (if necessary) spin coupling scheme of the singly 
occupied orbitals. The most convenient way to specify the order of the excitation 
is to call configurations "singly substituted" if they couple to the reference 
wavefunction by means of one-electron (F-operator) matrix elements, and 
"doubly substituted" if the coupling is via an exchange integral. 

We have used a shorthand notation in writing down the CSF, by specifying only 
the replacements with respect to qbo: qb A means that in all determinants of ~b0 R 
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Table 1. Singly substituted configurations 

V. Staernmler and R. Jaquet 

Nr. Type qb o CSF ME with qb o 

1 ( ~ + ~ )  ~/2(RIFcIA) 1 D, external (1), (2), (3) 

2 D, internal (2) <D~ (RIFc+�89 
1 u o 

(3a) ~(~b~,R + ~b2,n) (RIFc+�89 

3 S, external (2) dO A (FIFe-~KeIA) 
1 A i, 

(3a) ~2(qbl, u+ qb2,0) (UIFc - ~Ku + ~KvIA) 

4 S, internal (3a) ~l,uv (U]Fc 1 1 - 2Ku + 2Kvl V) 
o (UIFc - ~Kv + ~ K u l V )  dP l ,  f~ 

Fc = h + Y. (2Js-Ks)+ X (Jr-~Kv), 
s v 

Ke=~Kv . 
v 

is to be replaced by A;  the additional lower index in A d~l,n means that this 
replacement  has to be done only for the first determinant  in qbo. Fur thermore,  
since we use PNO- type  expansions, Tables 2 and 3 only contain "diagonal"  
configurations. 

The most  difficult cases are the semiinternal doubles for DS pairs (Nr. 11 and 
13 in Table 2). They contain formally singly substituted determinants  and are 
responsible for the well-known spin-polarization effects [28-30]. Here  the pair 
concept partly breaks down since the process of constructing linear independent,  
orthogonal CSFs mixes different pairs. In our previous I E P A  scheme [7] we 
have chosen CSFs which preserve the pair concept as much as possible, but lead 
to rather  complicated matrix elements and effective operators.  In Table 3 another  
alternative is chosen which seems to be simpler and more  symmetric.  The 
difference between these different possibilities is expected to be small as soon 
as all nondiagonal CI-blocks are included in the final CI matrix. 

The operators  appearing in the matrix elements in Tables 1-3 are given by 

F~ = h + E (2Js - K s ) +  Y. ( Y v - ~ K v )  
S V 

Kr =Y. K v  
V 

(A IK~s [B) = �89 (AR ISB ) • (ASIRB ) ]. 

(11) 

(12) 

(13) 

If we start f rom R H F  wavefunctions of the types (1)-(3) - type (3a) only if q~n+l 
and ~n+2 have different spatial symmetry - all singly substituted configurations 
satisfy Brillouin's theorem and do not belong to the interacting space. In most  
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Table 2. "Interacting" doubly substituted configurations 

Nr. Type dOo CSF ME with ~o 

A~ 1 DD external (1)-(3) CbRg (AIKRIA) 

2 semiint. (2) qb~ r ] 

1 ~0 u~ ~' (A[Kn[U) 
(3a) ~ ((I)I,R/~+ (I)2,R/~) J 

3 internal (3a) ~X,R~V~ "/{ (UIKRIV) 

4 DD' 
singlet 

5 

1 A A  ~ff~A external (1)-(3) ~ (~R~ + ~ s )  "~ (Alg~s IA) 

semiint. (2) ~ ( r  q b ~ g ) /  
45 (B fK.~s I U) 1 uB f lu  (3a) g(qbl,Rg+ qb 1,~s_ 

qb mU- q5 U~- ~/ 
-- 2 , R S -  2,RS) ) 

1 Ov cv internal (3a) ~ (d~l,~S- dpZ,Rg) 2(UIK~s [V) 

7 DD' 
triplet 

1 AB .Y~B A B  
external (1)-(3) x/-i2 (2~RS + 2gPRS + qbRg 2x/3 (A[KRs ]B) 

BA AB BA 
--Iffi)Rg q-- I~/~ s -- (2I)/~S) 

1 o(: oc ccr 1 semiint. (2) ~-~ (2chug + qb~q s - qbRg)/ 

1 uc O~ 1' 
(3a) ~(2~l,RS--2qb2,Rg ~ "f6(CIKRslU) 

g~ cO 
+ (I) l 'Rg + (I) 2"Rg / 

Oc ~u 
- c~,~s- ~2,~s) J 

internal (2) dP Uff 2(U[KRsIV) 

10 DS external (2) qb~u 
1__,~4 a~ax , (AIK~uIA) singlet (3a) X/~ k 1 ,RU-- '~ '2 ,RO)  

11 semiint. Table 3 

1 A B  fi.B B A  ~l 12 DS external (2) | (2~bRV+ qb~e-- qb~r) 

1 triplet 1 AB 

(3a) ~/l2(2q51'Ru_2o)z,~o+eo~,~u,~a XB I "/6 (AfK~uIB) 

B/~ BA AB +~2,RO--~I.~V--~2.RO)J 
13 semiint. Table 3 

14 SS' external (3a) A'ff" 01,uf" ~/2 (AIKbv[A) 
singlet 

15 SS' external (2) AB qb tJv 2(AIK5vIB) 
triplet 

( A ]K~s [B ) = �89 (AR [$B ) + ( ASIRB ) ] 
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Table 3. Semiinternal DS substitutions 

V. Staemmler and R. Jaquet 

Oo Excitation CSF ME with 0'o 

1 OA A a ~ / ~  (R]KrrIA) (2) R U +  UA (2qb~qu- q)R + ~R) 
p = l  ~-6 

A A UA V'A (2) R U +  UA ( 1 /2 ( -qbn+O~+O~u +O~,~) (RIKcr+KvlA) 
-- t~JA V A  p = 2 R E +  VA 1/42 (O~u-O~v)  1/45 (RIKu - g v l A )  
-- r~/'A ITrA ,/2(RIguvlA) R U  + VA 1/~/2 (O~u+dP~v) 
- eA OA 45 (R]K+uvIA) RV--, UA 1/,/2 (r 

(2) 
p > 2  

(3a) 

Compare Ref. 7 

RU-+UA } 1/ ' , /~  rr,~ OA A ", /312 - K v I A )  (2~ 1,R O- 2dO 2,R u + ~ 1,R (R IKu R V +  VA 
A .~ 

1 ~v  av  ,~0 aO 4-2(RIKuvlA) R U +  VA ~ (dP2,~u+d92,nr.r--Ol,r~9-dPl,nV') 
1 A V  A V  A O  A U  R V  + UA g(O2.~V+aP2.RU+dPX.~fZ+~I.Rf') "f2 (RI2Juv-KbvlA)  

cases they contribute only little to the total correlation energy as well as to 
excitation energies. But we have found some examples where their coupling 
with certain doubly substituted configurations is large and changes dramatically 
along a potential curve or surface. Their inclusion is also compulsary whenever 
correlation corrections to the expectation values of one-particle operators are 
to be calculated [31]. 

4. Determination of PNOs 

Maintaining the ideas of pair theories of electron correlation as reviewed by 
Kutzelnigg [15] we combine all excitations from a specified pair of occupied 
orbitals (characterized by their indices I and J and the spin coupling between 
them) into a "pair CI". This contains in general CSFs for a) external doubles 
(IJ  -~ A B ) ,  b) semiinternal doubles (IJ  ~ UA) ,  c) internal doubles (IJ  ~ U V ) .  
(We have indicated the different pairs by horizontal lines in Table 2). The 
dimension of pair CI is determined by the orbital basis set: if M '  is the number 
of external orbitals there are M ' ( M '  + 1)/2 external doubles for each pair if one 
does not work in a PNO expansion; there are M ' p  semiinternal doubles and so 
on.  

In order to reduce the dimensions of the pair CI (and the final CI) matrices we 
generally use pair natural orbitals (PNOs). The external doubles are treated in 
the same way as described previously in our closed-shell program [8] using the 
approximate Ahlrichs - Driessler scheme [32], the only modification is that the 
effective one-electron operators occuring in the generalized Brillouin conditions 
(compare Table IV of Ref. [8]) are much more complicated than in the closed- 
shell case. So far they have been coded explicitly for the cases (1)-(3) in order 
to keep the computer time for this step as low as possible but their automatic 
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generation with the matrix element generator (compare Sect. 5.) is in progress. 
By using PNOs the maximum number of external doubles per pair is reduced 
to M '  or M'/2 in triplet excitations. 

The semiinternal doubles can be included completely, their number per pair is 
only in the order of M'p (p being the number of singly occupied orbitals). 
Alternatively, one can use "semiinternal PNOs",  determined perturbationally 
or optimized by means of a Brillouin-theorem as proposed previously [7]. (See 
Appendix for details). In a series of pilot calculations we have found that these 
alternative treatments lead to virtually identical results (deviations in the order 
of 5.10-6a.u.  at most). The main drawback of an expansion in virtual SCF 
orbitals is that one cannot truncate the one-particle space without considerable 
loss in energy, using the PNOs of the external doubles of the same pair a 
truncation to about M'/2 configurations is possible. 

The external singles belonging to a fixed occupied orbital I are again considered 
as one "pair".  Here  a reduction of the dimension of the pair CI from M'  to 1 
analogously to the one for the semiinternal doubles is not possible - at least as 
long as one starts from a RHF qbo - because the coefficients CA vanish in first 
order. Instead we use the PNOs of the corresponding intraorbital pair R/~ if I 
is doubly occupied and virtual SCF orbitals if I is singly occupied. 

The internal doubles and internal singles have to be included explicitly; their 
number is generally very small. 

After the determination of the PNOs for each individual pair a pair CI is 
performed yielding a total pair energy E u  and a pair correlation energy 

eu  = E u  - Eo, e1 = E ,  - E0. (14) 

The sum of the pair correlation energies of the individual pairs is the total 
correlation energy in the " independent  electron pair approximation" (IEPA): 

i y  ! 

As in our closed-shell program [8] we make frequent use of symmetry properties 
of localized equivalent orbitals: PNOs, diagonal and off-diagonal CI-blocks and 
CI coefficients of equivalent pairs can be generated by symmetry operations 
rather than by recalculation. In highly symmetric molecules one can save more 
than 50% of computer  time by this procedure. 

5. Matrix Element  Generator 

The matrix elements between configurations belonging to the same pair and 
particularly those for different pairs are so complicated that it is almost impossible 
to code all of them explicitly as we have done before in the closed-shell program 
[8]. We have rather written a general matrix element generator for an automatic 
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construction and evaluation of CI matrix elements. It goes back to various studies 
in our own institute [33, 34] and is based on the following ideas: 

(a) Since the PNOs belonging to different pairs and the PNOs of the external 
and semiinternal doubles belonging to the same pair are not orthogonal to each 
other, nonorthogonality has to be included explicitly. 

(b) Since the CSFs used do not belong to one of the nice spin coupling schemes 
which allow for an analytical form of matrix elements [35] we have used the 
determinantal forms of the CSFs as given in the Tables 1-3 and applied Wick's 
algebra for a symbolic matrix element tape. 

(c) Each symbolic matrix element is constructed only once for a pair of prototype 
CSFs. It is stored and used whenever these prototypes occur. 

(d) The program is general enough as to allow application to more complicated 
reference wavefunctions qb0 as those given in (1)-(4). 

The construction of the symbolic matrix element tape in terms of prototypes 
needs about 5-60 min computer time (Telefunken 440, Univac 1108) for the 
three cases (1) to (3). It can be stored once for all on a permanent file (about 
100K Bytes), or the construction can be repeated for each individual calculation. 
The number of stored prototype matrix elements is 27 (closed-shell, [8]), 245 
(doublet), 789 (triplet), 787 (open-shell singlet). 
In constructing a full CI matrix using our matrix element generator it is necessary 
to emphasize the following points which are of fundamental importance for our 
treatment and which hold for the open-shell states treated here as well as for 
our previous closed-shell program: 

(1) Despite of the fact that the PNOs of different pairs are non-orthogonal [14] 
all the CSFs remain orthogonal to each other. 
(2) Two-electron integrals involving more than two external orbitals (SCF virtual 
orbitals, PNOs) do occur almost exclusively in the pair CI blocks, i.e. in the 
diagonal blocks of the full CI matrix. Furthermore, they are of the type 

(AB[BA)  = (A[KB[A) ext. doubles in singlet pairs 

(AB[BU)  = (A[KB[U) external vs semiint, doubles in singlet pairs, similar 
expressions in triplet pairs and between singles and 
doubles 

( A B [ B ' A  ') - (AB '[BA ') = 2 (A IK BB' [A') ext. doubles in triplet pairs 

(A,A' ,  B ,B '  are the two partners in a triplet pair function). 

Since the dimension of a pair CI in general is only 20-30, the 4-index transforma- 
tion is replaced by about 20 P (P = number of pairs) sweeps through the AO 
integral tape. 

(3) For the matrix elements involving CSFs of different pairs, there are only 
two-electron integrals of the form 

(RA[BS)  
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which are most easily evaluated using the K • operator  of the occupied orbitals 
R and S. Since these operators are already necessary for the construction of the 
PNOs of the pair RS they are calculated and stored prior to the determination 
of the PNOs and are read into the core storage whenever they are asked for in 
off-diagonal matrix elements. 

(4) Some additional difficulties arise in calculations including single substitutions: 
There  are matrix elements containing two-electron integrals with three external 
orbital indices in off-diagonal blocks connecting single substitutions from the 
orbital R and joint doubles RR, 1RS, 3RS, i.e. doubles involving the same 
orbital R. If we use the intraorbital PNOs of the pair R/~ as external orbitals 
for the singles from R then these matrix elements can be calculated immediately 
after the diagonal pair CI matrix for the pair R/~. Thus, no additional sweeps 
through the AO integral tape are necessary and the calculation of these matrix 
elements is primarily a problem of book-keeping. 

In any case, the inclusion of singles greatly increases the number and types of 
off-diagonal matrix blocks, thus leading to a considerable increase in the com- 
puter time. Since they belong to the non-interacting space and generally con- 
tribute little to the total correlation energy one has to decide for each system 
whether or not they can be excluded. 

6. The CEPA Scheme 

The diagonal and off-diagonal CI blocks as constructed by means of the matrix 
element generator for the PNO configurations can be combined into a final CI 
matrix. Its dimension is roughly given by 

Nc,  ~ N~ �9 NpNo + N c '  NpNo (16) 

with 

Nc  = number of occupied orbitals to be correlated 

NpNO = average number of PNOs per pair; generally 20-30.  

The second term of the right hand side is only effective if singles are included. 
The small number  of internal and semiinternal configurations is neglected in 
(16). The diagonalization of the CI matrix (using the procedure given in [8]) 
yields a strictly variational total CI-energy denoted by EPNO-CI. 

It is well known nowadays that any CI treatment including only singles and 
doubles has not the correct dependence on the number of electrons [24-26]. 
This defect has to be remedied by the inclusion of "unlinked clusters" of singles 
and doubles. The CEPA method amounts to an approximate scheme how to 
take care of these effects without calculating new matrix elements. 

We are not going into details concerning different CEPA models [12]. For the 
open-shell cases (1)-(3) we have used the CEPA-2 model [4] which in the case 
of singles and doubles leads to the following equations (/z denotes one pair,/3" 
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say, I the single substitutions from the occupied orbi ta l / ,  C~ and CI the vectors 
of the respective CI coefficients): 

E = E0 +Y, e~, +Y~ e1 (17) 
t~ I 

e, = (OolHIO,)G (18) 

~ = (a~olHla~)G (19) 

H ~ o + H ~ G + E  H~G+EH~G+ E 
v Y J < K  

H~,SK CsCK = (Eo+ e~, + e1 + es)G, 

(20) 

*' ( ) 
H I o + H H G + ~ H I F j + Y .  HI~C~= Eo+e,+ e~, G. 

J v 

(21) 

The notation is completely analogous to the one used in the closed shell case [8]. 

The contributions ei of the singly substituted configurations, as defined in (18), 
vanish if one starts from an SCF wavefunction, the corresponding coefficients 
Cz are small, but finite, since the non-zero second order terms HrvC~ enter into 
(21). By means of the coupling elements H, jCj  the singles enter into (20) and 
influence the coefficients C/~ and pair correlation energies e~,. The last term on 
the left hand side of (20) represents unlinked clusters of singles and is neglected 
in the present version of our program, as are higher-order terms. Finally, the 
last term on the right hand side of (21) is the sum of all pair correlation energies 
e~, in which the pair index/z contains the orbital index L 

For all pairs /x, e~ contains the contribution of external doubles as well as 
semiinternal and internal doubles if the latter do exist. In the case of DS pairs 
with p -- 2 (compare Table 3 and Sect. 3.) we have distributed the contributions 
of the three (open-shell singlet) or four (triplet) semiinternal excitations equally 
among the two pairs R U  and RV. There  is a certain degree of arbitrariness in 
this procedure,  but at least the symmetry is preserved if U and V are equivalent, 
e.g. for "rr 2, 3s and 1A states. 

It has to be stressed that the justification of the CEPA model is based on certain 
complete and incomplete compensations of unlinked cluster contributions [15]. 
By sticking to CEPA-2 [4] and using the e ,  as energy denominator shifts one 
may introduce non-negligible errors, in particular if some internal or semiinternal 
contributions are large (Pauli principle violations). This is apparently the reason 
for the rather poor  CEPA value of the energy difference between 3s I and lAg 
in 02 (part II of this series). An improved version of the CEPA scheme is 
currently in progress; a thorough discussion of this point is necessary for the 
multiple reference CEPA. 
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Appendix 

Since the  CSFs  of s emi in t e rna l  doub le s  for  the  pa i r  I J  con ta in  on ly  one  ex te rna l  
o rb i t a l  at  a t ime  we have  the  equ iva lence  

ext. 
E C A f ~ I a r (  ' '  " U ' ' "  A .  �9 .) = C A , ~ I j ( ' "  �9 U "  �9 �9 A .  �9 . )  (1) 
A 

C A ' ~ A '  = Z G A l A  (2) 
A 

i r respec t ive ly ,  which set  of ex te rna l  o rb i ta l s  ~0A is used.  Tha t  means ,  the  use of 

a single " s emi in t e rna l  P N O "  q~A' is equ iva len t  to the  CI  wi th  all CSFs  
qb~j ( . .  �9 U �9 �9 �9 A � 9  on the  left  hand  side of (1). The  coefficient  CA' has been  
a d d e d  since CA' is no rma l i zed .  

The  CA are  the  CI  coefficients of the  semi in t e rna l  doub les  in the  pa i r  CI.  T h e y  
can be  e s t ima ted  p e r t u r b a t i o n a l l y  to first o r d e r  by  

(dP0[Hlqb , , ( ' ' '  U " ' A . . I ) )  

CA=E[cP~j("  �9 �9 U ' "  a "  " ) I - E 0 "  (3) 

A sl ight ly  b e t t e r  op t imiza t i on  for  Ca '  is o b t a i n e d  using the  Br i l lou in  cond i t ion  

(~Po+CA,  Cbzj( . . . U . .  . A ' . .  .)IH)dP,j(.  . . U . . .  A " . .  . ) ) = O  for  allq~a,,-l- 

(~3A' (4) 

i.e. the  r e q u i r e m e n t  tha t  CSFs  with  ~A" ins tead  of ~ a '  d o n ' t  l ead  to any energy  

i m p r o v e m e n t .  (4) l eads  to an i n h o m o g e n e o u s  p s e u d o - e i g e n v a l u e  equa t ion  for  ~ a '  
which is so lved  i t e ra t ive ly  since the  u n k n o w n  coefficient  CA'  ente rs  explici t ly,  
in each  i t e ra t ion  CA,  is d e t e r m i n e d  by  the  fo rmu la  (3) [7]. In  mos t  cases the  
two p r o c e d u r e s  l ead  to a lmos t  ident ica l  resul ts ;  the  r eason  is tha t  the  ma t r ix  
e l e m e n t s  (qb0[H]qbLr (. �9 �9 U .  �9 . A �9 �9 .)) and  the  ene rgy  E[qbzj(. �9 �9 U �9 �9 �9 A �9 . .)] 
can be  o b t a i n e d  easi ly since two-e l ec t ron  in tegra ls  involving m o r e  than  one  
ex te rna l  o rb i t a l  do  no t  occur.  

I t  has to be  m e n t i o n e d  tha t  the  r e p l a c e m e n t  (1, 2) is only  poss ib le  when  the  CA 

d o n ' t  vanish  in first o rde r .  N o n i n t e r a c t i n g  conf igura t ions  and  singles for  which 
the Br i l lou in  t h e o r e m  holds  canno t  be  s impl i f ied  in this ma nne r .  

Acknowledgement. We are indebted to Prof. Kutzelnigg and Dr. Kollmar for numerous stimulating 
discussions on this subject. 
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